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Abstract

We compute the survival probability of an electron neutrino in its flight through the solar core experiencing the Mikheyev-
Smirnov-Wolfenstein effect with all three neutrino species considered. We adopted a hybrid method that uses an accurate
approximation formula in the non-resonance region and numerical integration in the non-adiabatic resonance region. The
key of our algorithm is to use the importance sampling method for sampling the neutrino creation energy and position and
to find the optimum radii to start and stop numerical integration. We further developed a parallel algorithm for a message
passing parallel computer. By using an idea of job token, we have developed a dynamical load balancing mechanism which
is effective under any irregular load distributions. (€) 1999 Elsevier Science B.V. All rights reserved.

PACS: 02.70.—c; 14.60.Pq; 26.65.+t

1. Introduction

In recent years the utility of neutrinos in probing the interior structures of stars and their violent deaths has
been increasingly recognized. 30 years ago Davis et al. [1] started their bold and pioneering experiment to
measure neutrino fluxes radiating from the Sun as byproducts of nuclear fusion. The most striking event in
neutrino astronomy occurred on 23 February 1987, when an exploding supernova was caught in action [2] and
24 neutrinos from that supernova were detected independently at several neutrino laboratories worldwide [3-
5]. Neutrinos that were introduced to balance the momentum deficit in beta decays have undoubtedly become
important particles composing the Universe. They carry away most of the explosion energy of type II supernova
and some people [6] even proposed neutrino stars and galaxies in an attempt to provide missing mass of the
Universe. Thus the advent of neutrino astronomy is very timely and a flurry of activities has been generated in
this field [7].
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On the theoretical side a few groups [8,9] have been perfecting their computer codes simulating physical
processes taking place in the solar interior. However, the experimental data and the theoretical predictions do
not agree so far, which has been termed the solar neutrino puzzle (for a review, see [10,11]). The discrepancies
between the standard solar model (SSM) predictions and the measured capture rates are so large that a new
mechanism was needed to reduce the solar neutrino flux. This could be accomplished if we abandon the idea
of masslessness of the neutrino. Neutrinos can be given masses in various ways. The see-saw mechanism and
its extensions [12-14] are considered to be the most plausible ideas.

If neutrinos acquire masses then the flavor eigenstates are no longer energy eigenstates. The amplitudes in the
flavor eigenstate basis are time-dependent quantities and thus neutrino flavors change periodically [15]. This
implies that a neutrino born as an electron neutrino in the solar core can transmute into a muon neutrino or a
tau neutrino on its way to the Earth. There have been several experiments to measure oscillations of neutrinos
produced in accelerator laboratories and those produced in the upper atmosphere as decay products from cosmic
rays. The Super-Kamiokande experiment [16] for atmospheric neutrinos recently set a stringent limit to the
neutrino mass differences. It has established that neutrinos are no longer massless.

Neutrinos interact with electrons in matter and acquire effective masses. Mikheyev-
Smirnov-Wolfenstein [17,18] proposed a mechanism that the flavor transmutation can be enhanced in a
medium. The transition rates between mass eigenstates can be obtained approximately using the Landau-Zener
formula [19,20]. There have been many attempts to obtain the rates approximately in analytic forms [21-24].
However, all these efforts are for two generation neutrinos only and of limited usefulness. It would be most
reliable and useful if we could obtain them numerically for three generation neutrinos. However, the numerical
computation requires excessive amount of number crunching and a new generation supercomputer was awaited.

In the past 10 years supercomputer technologies such as RISC processors, both hardware and software
technologies for interprocessor communication, memory technologies, operating systems for multicomputer
systems, etc., advanced significantly. Especially technologies for parallel computer architectures [25-27] ma-
tured so much that the solar neutrino flux can nowadays be computed without too much burden within a
tolerable time span.

We present a straightforward numerical algorithm that computes the survival probabilities of the solar neutri-
nos. Since it is extremely time-consuming we have developed a parallel algorithm that can be used in message
passing parallel computing machines. In Section 2 we briefly review solar neutrino physics. In Section 3 we
set up equations to solve. In Section 4 we explain our sequential algorithm and then in Section 5 we present
our parallel algorithm and test results.

2. Overview
2.1. Neutrino oscillations

The standard SU(2), x U(1)y gauge theory for the electroweak interaction with massless neutrinos has
become shaky by the recent SuperKamiokande data for atmospheric neutrinos. Neutrino oscillation between
flavor eigenstates necessarily implies the existence massive neutrinos. It can be explained using a simple
quantum mechanical argument. Let us consider two generations of neutrino for simplicity. A neutrino state in
the flavor (or weak) eigenstates can be expressed as a superposition of the mass eigenstates as follows:

Ve cosf sinf v
v, )\ —sin@ cos vy )’ (h
I3 2
where ¢ is the vacuum mixing angle. If we assume that the neutrinos have non-degenerate masses, then the
equation of motion for neutrino states in vacuum can be written as follows:
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.d (v 1 2E? -+ m% 0 V]
i— = — 2 2 . (2)
dt \ »2 2E 0 2E°+m3 ) \ »
The common diagonal elements 2E? give rise to an overall phase and thus can be subtracted harmlessly.

Substituting the transformation equation (1) and subtracting a term, (m? cos? 0 +m3 sin?0) — (1 /2) 4;1 cos(28),
from the diagonal elements, Eq. (2) can be rewritten as

ii ve\ _ 1 [ —dycos(20) 4y sin(26) Ve (3)
dt \vu )~ 4E \_ 4y15in(20)  +4y cos(20) v, )’
where 4y = m3 — m?.
Neutrino productions and detections take place in its flavor states. We can obtain the survival probability for
an electron neutrino in vacuum as follows:

P(v, — ve;t) = [{pe(1)[2.(0))? = 1 — sin®(20) sin® (%t) : (4)

Non-degenerate neutrino masses and a nonzero mixing angle give rise to the change of neutrino flavor as it
evolves in space or time.

2.2. MSW effect

When a neutrino propagates in matter, it weakly interacts with the particles in the medium. We assume
the coherent interactions with matter so that the medium remains unchanged and it allows the interference of
scattered and unscattered neutrino wave functions. Coherent elastic scattering gives rise to the effective potential
for neutrino due to weak interactions with the particles in the medium. The detailed calculations to derive the
effective potential from the low-energy weak interaction Hamiltonian can be found in Refs. [11,28]. With the
additional potential, the equation of motion in matter is modified as follows:

ii Ve \ _ L —A2c08(20) + A 4r15in(28) Ve (5)
dt \v. ) 4E Ay sin(26) Aoy cos(28) v, )’
where we subtracted a mass squared term A, induced by the weak neutral current interaction, which are

commonly present in the diagonal elements. The mass squared term A, induced by the weak charged current
interaction appears only in the (1-1) position and is given by

A. =2V2GFrEN,, (6)

where Gr is the Fermi coupling constant, E the neutrino energy and N, the electron number density in the
medium.

When the variation of the induced mass is very small over the oscillation length Lo = 47E/ 4y, we can
introduce the effective masses and the effective mixing angle ¢ as follows:

ui =§ + %c- — 1 (421 c05(28) — A)% + (A sin(260))%)'2, (7

p3= % - % + 31 (421 cos(28) — Ao)” + (4 sin(26))°1'/2, (8)
where X = m? + m} + A, and

tan(26) = tan(26) (9)

1 — A./4y cos(20)°
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The survival probability for an electron neutrino which is produced in matter at time ¢ = 0 and detected in
vacuum at time ¢ is given by

P(v, — ve;t) = cos® ¢ cos® @ + sin® ¢ sin® @ + § sin(26) sin(2¢) cos <52(—;)> , (10)
where (1) = [ [pd(t) — ud(¢)] dr.

Mikheyev-Smirnov-Wolfenstein [17,18] noticed that the matter effects may change the behavior of the
survival probability drastically if the neutrino passes the resonance point (¢ = 77/4). When the medium density
rapidly varies, we can use the Landau-Zener level crossing probability Prz to obtain the asymptotic survival
probability as follows:

P(v(,——>v,,)=%[l+(1—2PLz) cos(26) cos(2¢) 1, (11)
where Pz = exp(—3my) and
4y sin®(26)
E|A/A|r

The dot over A in the denominator of v means time derivative and the subscript R stands for the calculation at
the resonance point. The detailed formulae for the MSW effect with three generation neutrinos will be given in
the next section.

(12)

2.3. Landau-Zener approximations vs numerical computation

There have been many attempts to compute the neutrino survival probability. With the assumption of a linear or
exponential electron density profile, analytic formulae for the Landau-Zener transition probability were obtained
in the two generation case [21-24]. In this case even exact solutions of the neutrino evolution equations were
obtained [29,30]. Direct numerical computation was done also for the two generation case [31,32].

For the three generation case results from the two generation case were extended with some limita-
tions [28,33-45]. In all these works that used the Landau-Zener formula, the possibility that the most neutrino
productive region and the non-adiabatic resonance region overlap was overlooked. There is no approximate
formula like the Landau-Zener formula to use in this case. Another difficulty arises when two or three non-
adiabatic regions overlap.

Thus an efficient numerical algorithm is needed to cover all possible cases. To the best of our knowledge,
there has been no publication on direct numerical computation for the three generation case. The neutrino
evolution equations are plain ordinary differential equations and do not require fancy and sophisticated numerical
techniques. However, the amount of computing is excessive and a new generation supercomputer is needed. In
this paper we shall present an algorithm for a massage passing parallel computer.

3. Detailed formalism
3.1. Wave equations in weak and mass eigenstate basis
We now set up equations needed for tracing the flight of a neutrino through the solar core interacting with

matter via the neutral and charged currents and thus experiencing the MSW mechanism. In the weak eigenstate
basis let us write the neutrino wavefunction ¢/ (¢) as

Py= D aa(n)va). (13)

a=e,u,7



J.S. Kim et al./Computer Physics Communications 120 (1999) 41-56 45

Then its wave equation is written as

a.(t) 1 My +Ac(t) Mp Mp a.(t)
i:z'_t a, (1) =ﬁ My M»n Mx a,(t) |, (14)
a-(t) M3, M3y Mz a- (1)

where 8 = E/Ro(MeV/cm) and ¢ = R/Ro.
The mass matrix is nondiagonal in the weak eigenstate basis,

Mi; = ZUjkmiUkj’ (15)
k
where the unitary matrix U transforms the mass eigenstate into the weak eigenstates,
3
VQ=ZU,,,,-V,<, a=e,u,T. (16)
i=1

The Particle Data Group adopts the convention for the mixing matrix,

CiCs S51Cs S3
U=| —-85C,— (1858, CiC— 51895 S |, (17)
$18 —C185C,  —C18 — 5150, GG

where C; = cos 6; and S; = sin@; and the three mixing angles 6, 6>, and 63 roughly measure mixing between
mass eigenstates (1-2), (2-3), and (1-3), respectively. We have neglected the CP violating phase, which is
irrelevant in this problem.

In the most general situation, one should integrate Eq. (14) numerically, which seems to be a trivial job.
However, for small values of 4;/E and Ay /E the mass matrix elements become large and one should take a
special care about the errors.

If we change the basis to the mass eigenstate the wave equation becomes

ai (1) WO 0 0 Pa() Pn(n) ai (1)
i~ | @ B\ ° sty 0 | =il —Pa(n) 0 () as (1)
as(t) 0 0 i) —@31(1) —Px(1) 0 as(1) (8)

The off-diagonal elements @;; are given by

Dy (1) =y + 5302,
®13(1) = —s1c3¢2 + 13,
Dy (1) =cic3dr + 513, (19)

where ¢; are mixing angles in matter and ¢; = cos ¢; and s5; = sin ;. Since ¢; are proportional to the spacial
derivative of the electron density p, all @;; are proportional to p. The off-diagonal terms come about because
the mass eigenstates themselves depend on the electron density and are varying as the neutrino passes through
the solar core.

The derivatives of the angles are with respect to time or equivalently neutrino’s path length r = ct. The
mixing angles ¢; in matter can be obtained from the mixing matrix which diagonalizes the mass matrix. Define
a pair of parameters, g1 = U3/Uj3 = ¢352/s3 and g2 = Us3/Uyz = c3¢2/s3. Then we obtain
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tanps = 1/4/8 + g3,
tan b2 = |g2]/1/ 87 + &3 - (20)

It takes some more algebra to obtain an expression for ¢;. Define g3 = Uy /Uy = —[(c2/c3) tangh; +
(s352/c3)]. Then we can derive

tan ¢y = —[(s352/¢3) + 831 (c3/c2) . (207)

In order to integrate the six component ordinary differential equations (18) in the mass eigenstate basis, one
has to first diagonalize the mass matrix to get u?(¢) at each time step. One then has to find the mixing angles
in matter and then compute their time derivatives. Thus it is not a good idea to integrate the wave equation in
the mass eigenstate basis in general.

3.2. Adiabaticity

In a region where the off-diagonal terms are negligibly small the mass-based equation (18) is more advanta-
geous. In this case the equation becomes practically diagonal and each mass eigenstate evolves independently
without influencing each other. Such a region is called the adiabatic region. Instead of integrating the wave
equation one obtains the solution simply by performing the phase integrals,

t
20t
a;(t) = a;(ty) exp(—i/ —lﬂz(ﬁ—) dt'). (22)
o
One still has to diagonalize the mass matrix to carry out the integration but it is much easier than solving
Eq. (18).
Let us define a set of adiabaticity parameters,

)
yy = ) (23)
! 1289;i|
which reduces to Eq. (12) in the two generation case. When all parameters are much larger than unity,
vii > 1, (24)

the off-diagonal terms can be neglected and there will be no transitions between mass eigenstates. The adia-
baticity conditions (23) are somewhat complicated in the case of three neutrinos. They depend on the initial
parameters, (E, 4;;, 6;) in a complicated way. For example, in the two generation case, the adiabaticity condition
(23) can be written as

Asin®(268)

—_— 3x 1077,
E cos(26) >3 x10 (25)

where 4 is in €V? and E is in MeV. In Eq. (24) we have used the fact that |N/N]| is approximately constant for
r > 0.2Rp and |[N/N|g ~ 3 x 10715 eV. Thus when the neutrino energy is high or the mass square differences
are very small or @ is small, one begins to see non-adiabatic resonance regions. In the three generation case,
the situation is more complicated but these trends are qualitatively identical.
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If we assume the mass hierarchy u; < my < u3, then the (1-3) mixing is always small. Thus practically
we only need to worry about the (1-2) and (2-3) mixings. The Landau-Zener formula for the transition
probability between two mass eigenstates, i and j, is given by

Puz(i— j) = exp (=73 (26)

In non-adiabatic resonance regions the elements of the mass matrix become large and it is wise to have the
weak eigenstates evolve according to Eq. (14). However, integrating the wave equations in any basis is very
time-consuming because one component varies rapidly and holds the others down due to the coupling terms.

3.3. Evolution through the non-resonance region

Let us denote the mixing matrix at radius ry as U(8;) where 6; are the three mixing angles at ry and the
mixing matrix in matter at a radial position r; as U(¢;) where ¢; represents the three effective mixing angles
at 7. When a neutrino in a mixed state passes through the non-resonance region from rp to ry, then to a very
good approximation, we can express its transition probability into a weak eigenstate o as

) 2
V(T,U(é?)exp<—i/Eiz(—ﬁt)dt’)UT(qb)vm,-x

rL

P(Vmix — Vo) = (27)

If we take an average of the transition probability over paths, then the exponential factors drop out and we
get

3
(P(Vmix — ¥0)) = 3 _[Uai(O) 1D _Usi(P)anl]. (28)
i=1 p

For a real mixing matrix U which is the case when the CP violating phase in the mixing matrix is zero, it
is reduced to

3
(P(mix — Vo)) = O _[(Uai(0))7 Y Upi(#)a, 1. (29)

i=1 P

4. Sequential algorithm

We now explain our computation procedure.

4.1. Sampling neutrino energy and creation position

We sample the neutrino energy according to the energy spectrum f;(E) predicted by the standard solar model
and the capture rates x,(E) of detectors. We use the data provided by Bahcall et al. [8,46]. What we use for
the sample function is the product F(E) = fi(E) X x,(E). For example, for the boron neutrinos captured
by the chlorine and gallium detectors, we made a plot of F(E) in Fig. 1. We adopt the importance sampling
method frequently used in Monte Carlo methods [47-49]. We pick more sample points in an interval where the
sample function has larger values. Our choice of the sampling points according to F (E) is listed in Table 1.
We strategically placed sample points so that all kinds of neutrinos that contribute to the chlorine detector are
represented according to their importance.
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Fig. 1.
Fig. 1. Boron neutrino energy sampling functions: F,(E) = fg(E) X x4(E) with E in MeV.

Fig. 2. Neutrino radius sampling function: r;(¢) with t = R/Rg.

Table 1
Sampling points of neutrino energy focused on B neutrino

Interval Number Increment Comment
0.737-1.862 10 0.125 N, O, Be, pep
2.317-8.004 12 0.517 B
8.155-12.65 30 0.155 B
12.65-14.65 4 0.500 B
14.65-18.65 4 1.000 hep

Table 2

Sampling points of neutrino creation position focused on B neutrino

Interval Number Increment Comment

0.004-0.020 5 0.0040

0.020-0.100 32 0.0025 bodies of B, Be, O, N, pep; head of hep
0.100-0.128 8 0.0035 tails of B, Be; bodies of pep, hep
0.128-0.253 10 0.0125 tail of Be; bodies of N, pep, hep
0.253-0.353 5 0.0200 tails of pep, hep

We then sample neutrino creation positions according to the radial spectrum r;(¢) (¢t = R/Rg) predicted by
the standard solar model. Here i stands for neutrino sources like pp, B, Be, etc. We use the Bahcall data again.
In Fig. 2, the radial spectra of neutrinos from various sources are depicted. The spectra for the boron, fluorine,
and oxygen neutrinos are very similar and we can use the same sampling table. We again use the importance

sampling method. Our choice of the sampling points is listed in Table 2. Our basic sampling strategy is the
same as before.
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Fig. 3. A typical neutrino oscillation with 4;5 = 105 eV2, sin?(26,) = 0.001, 43 = 2.2 x 10~3 eV2, sin?(263) = 0.9973, E, = 5 MeV.
The limits of the non-adiabatic region are BAND(1) = 0.2092, BAND(2) = 0.2262 with y. = 17.59045. The abscissa refers to a% with
different scales and the ordinate refers to t = R/R¢.

4.2. Locating the non-adiabatic regions

Before we numerically integrate the neutrino evolution equations, we check whether and where the non-
adiabatic regions are located by computing the adiabaticity parameters, y;;. Using an elementary root finding
algorithm, we check where y;;(t.) = y., with y. = 17.59045, for example. This value of . yields P z = 1078,
It takes a little sophisticated algorithm to find out the beginning and end points of each non-adiabatic region
within the interval 0 < ¢ < 1. Their existence requires large values of E/4;; or small mixing angles. The
non-adiabatic regions may overlap in a complicated way. We shall denote the smallest of the beginning points,
BAND (1) and the largest of the end points, BAND(2).

4.3. Evolution from birth to the edge of non-adiabatic region

Suppose that the neutrino is born at a radial position ¢ in a non-resonance region. Then as it moves out of
the solar core until it enters into the non-adiabatic resonance region, its amplitudes in mass eigenstate remain
unchanged. Thus we do not have to integrate the evolution equation. Instead, we simply decompose the electron
neutrino eigenstate into mass eigenstates at the birth place and then reassemble them into the weak eigenstates
at the edge of the non-adiabatic regions, BAND(1). Thus we transport the neutrino adiabatically.

Our computer experiment indicates that the amplitudes begin to oscillate before the neutrino reaches the edge
(see Fig. 3). Thus we have to start numerical integration well before the edge to keep the required accuracy
where the amplitude of oscillating amplitude is smaller than the tolerance. The optimum starting location
t; < BAND(1) depends on the particular set of parameters and its determination is the most difficult part of our
algorithm. We have to estimate it without actual numerical integration.

We measured BAND(1) — ¢; relative to the width of the non-adiabatic region, 8 = BAND (2) — BAND (1), with
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ve = 17.59045 and a tolerance of 5 x 10~3. For various combinations of (42, 81, E,) with dy3 =2.2x 1073 eV?
and 6, = 63 = 43.5°, we observed (BAND(1) —¢,)/6 < 2. Thus we set t; = BAND(1) — 26.

When a neutrino is born at ¢ < g, it is transported adiabatically until 7, and then its evolution equation is
numerically integrated. In other cases the integration starts at the neutrino birth position. In this way we can
save a lot of computing time without loosing accuracy. It is very effective when the non-adiabatic region lies
much away from the solar center. This is the case when 4;,/E, or 6; are small.

4.4. Integration through the non-adiabatic resonance region

Now a neutrino is created at a radial position ¢ with energy E, chosen from Tables 1 and 2. Then we let it
start its journey towards the Earth. Once it passes beyond ¢, or if the neutrino is born within the non-adiabatic
region, we integrate the six component ordinary differential equation in the weak eigenstate basis, using the
standard ODE solver such as DDEQBS of the CERN library [50] with tolerance ~ 107>, Higher accuracy
is possible but unnecessary due to uncertainties in the solar model predictions and detector sensitivities. The
routine DDEQBS is an implementation of the Bulirsch-Stoer algorithm [51], which is known to be one of
the fastest algorithms. It is carried out from ¢; or the creation position till the upper limit, BAND(2). Due to
rapid oscillations of a,(t), very fine time steps are needed to keep the errors within tolerance. The subroutine
DDEQBS survived this stringent test with modest efficiency.

Beyond the upper limit, namely entering into the non-resonance region, the mass eigenstate components of
the neutrino oscillate about almost constant average values. The neutrino oscillation lengths, Lo = 47E, /4;;
are computed at r = BAND(2) and ¢ ~ 0.99. Then the increment dt is fixed at 1/720th of the smallest of the
oscillation lengths. The amplitude of the mass eigenstate neutrino, p; = |a;|?, is monitored at every time step.
We need to diagonalize the mass matrix to get mass eigenstate amplitudes but this overhead is much less than
that of blind integration all the way to ¢ = 1. We could monitor p, = |a,|? instead. Due to beats occurring
between mass eigenstates with different oscillation frequencies, it is difficult to recognize where the electron
neutrino wave stabilizes.

We thus monitor at least 720 times as the neutrino oscillates one cycle. We especially monitor whether the
amplitude passes extrema. After observing some number (about 10) of extrema, we begin to take the average of
maxima and minima. We then check if the average value has converged to a constant value within a tolerance,
~ 5 x 1073, Once we confirm the convergence we enter into the next phase of integration. We save the value
of ¢ as ty and all six neutrino components, a,(?).

4.5. Integration beyond the non-adiabatic region

There is no need for direct numerical integration in this region. For transporting a neutrino in the non-
resonance region we use the accurate and efficient formula, Eq. (28), with ¢ = ¢y as the beginning point and
t = 1 as the end point. It is worrisome that different choices of y. may yield a different set of BAND(I) and
result in different values for the survival probabilities. We have tried different values for v, and obtained the
same result within the tolerance. Thus our results are very reliable.

In this way we save a big chunk of computing time than numerically integrating the evolution equations from
the neutrino birth point to the solar surface. The key of our algorithm is to find the optimum radii to start and
stop numerical integration and then to use the accurate and quick adiabatic formula. In order to help the reader
to understand our algorithm, we made a plot of a neutrino oscillation in a typical setting in Fig. 3.

When there are well separated multiple resonance regions we can apply the above algorithm to pass each
non-adiabatic resonance region. However, if the regions are closely adjacent to each other or overlap it is better
to merge them into a single region.

The idea of using analytic formula in the non-resonance region and numerically integrating in the non-
adiabatic region was advocated by Messiah [52]. This hybrid method was exploited for the two generation
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Table 3
Computation times for jobs in seconds; the number in parentheses is the occurrence number of non-adiabatic regions in a job

sin2(26,) 412

10-3 10—4 105
1 x 104 6(0) 147(10) 5895(60)
1 x103 6(0) 189(7) 8972(60)
1 x 1072 6(0) 6(0) 9185(56)
1x10~! 6(0) 6(0) 6(0)

case in [31].

5. Parallel algorithm
5.1. Grain size

In order to assess the parameter values that agree with the experimental data, we need to numerically solve
the six component ordinary differential equations, from various neutrino creation positions to the solar surface
and at various neutrino energies, for a given set of parameters, (42, 423,61, 62,63). 62 has no effect on the
survival probability. We set sin?(26,) = 0.997 in accordance with the recent Super-Kamiokande data for the
atmospheric neutrinos [16]. So we need to sweep over six parameters, (423,63, 412,01, E, t). While holding
(4x, 63) fixed we sweep over (42, 61, E, t). Thus surveying the entire parameter space requires a tremendous
amount of computation. Since each neutrino is traced independently, a workstation cluster or a medium-grained
massively parallel computer is ideal for the task.

On a message passing parallel computer [25], it is convenient to set up a virtual machine complex where
there is a host node and many worker nodes. We choose an operation mode that the host node assigns jobs for
worker nodes, collects computed results, then writes the combined results to a file. A worker node computes
the survival probabilities of electron neutrinos born at 60 selected radial positions with 60 selected energies for
a given set of (412,8;) and then sends the results to the host.

In Table 3, we give a sample of measured computing times with various combinations of (4,2,6;). In our
test run, we chose a set, (4,3 =2.2x 1073 eV?, sin?(265) = 0.997). We see that the computation time depends
on the existence of the non-adiabatic regions and their widths crucially. It increases drastically at smaller values
of A, or 6;. Using this information we need to choose the optimum grain size.

A mini-job is defined as the whole computation of 60 survival probabilities for a set of (412,61, E,). A job
is defined as the whole computation of 60 x 60 survival probabilities for a set of (4;2,8;). Thus a job consists
of 60 mini-jobs. A task is defined as the whole set of jobs for a set of (423, 63). Thus it would be wise to nest
the loops, E,-wise first (inner most loop) and &;-wise next (inner loop) and Ajp-wise last (outer most loop).

We can now classify the grain sizes of the problem. (1) Coarse grain: the 6,-loop is distributed. (2) Medium
grain: the energy loop is distributed. (3) Fine grain: the radius loop is distributed.

As we can see from Table 3, the work load will be severely unbalanced if we choose the coarse grain. On the
other hand, if we choose the fine grain the processors will be too frequently interrupted for communications.
Thus the optimum grain size is the medium grain in this problem.

5.2. Job scheduling and data communication

There are a variety of communication routines provided in the MPI (Message Passing Interface) environ-
ment [53]. Since all communications take place only between the host and worker nodes but not among the
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nodes in our problem, we use the simplest of them, MPI_Send and MPI_Recv. These are synchronous blocking
routines. Asynchronous nonblocking routines are also available but they are more useful for an inhomogeneous
problem requiring sophisticated communications among worker nodes (see, e.g., [54,55]). These routines label
a message with a tag. If one calls MPI_Send to send a message with a given tag then one should call MPI_Recv
with the same tag to receive that message.

The host and all nodes construct a unique job table in such a way that the mini-job number count is increased
in the inner most E, loop and a set of three loop counts, the E,-loop count and the #;-loop count and the
Ay>-loop count corresponding to that mini-job number are stored in the table.

After performing initial household chores, each worker node sends to the host its node number with a READY
tag. When the host in listening mode receives a worker node number with a READY tag, it replies to the sender
by sending the mini-job number N with a JOB tag.

When a worker node receives a mini-job number with a JOB tag, it looks for the set of values (42,6, E,)
corresponding to that mini-job number from the precomputed table. At a given neutrino energy value of the 60
preset energy values (cf. Table 1) the node computes the boundaries of the non-adiabatic regions, BAND (1) and
BAND(2). Then the worker node computes survival probabilities starting from 60 selected radial positions (cf.
Table 2). After it sweeps through the radius loop it sends the mini-job number and the 60 survival probabilities
back to the host with a RESULT tag.

Then the job hungry worker node sends to the host its node number with a READY tag again. The host in
listening mode replies to the sender by sending the mini-job number from the queue. Thus the host and worker
nodes cooperate to schedule jobs interactively for optimum load balance. The mini-job number is like a work
token that the host gives to each worker node.

The host receives the mini-job number N and the computed results from worker nodes in a random order.
It stores the survival probabilities at 60 consecutive memory locations starting from the 60xNth position in
the array. Since a mini-job number corresponds to a unique set of loop counts for (4,8, E,), the host can
retrieve the information from its own table. After all the computed data are received the host writes the ordered
data to a file.

5.3. Test run on HP exemplar

We have used a 32 node HP X-Class Exemplar machine. Its architecture is a hybrid of a symmetric
multiprocessor (SMP) design and a cache coherent non-uniform memory architecture (cc-NUMA). A node
consists of a 200 MHz PA-8200 yielding 0.80 Gflops peak performance, a 2 MB D cache and 2 MB I cache. A
processor agent controller (PAC) houses a pair of nodes. 8 PACs are connected to 8 memory access controls
(MAC) via a nonblocking 8x8 crossbar switch with a bandwidth of 960 MB/sec per port. One MAC controls
4 banks of memory. A hypernode consists of 8 PACs, one crossbar switch, 8 MACs, 8 memory modules and 8
toroidal accesses (TAC). 8 MACs altogether connect 16 nodes to the 32-way interleaved physical memory of a
capacity 256x16 MB. The inter-hypernode communication is controlled by TACs and its connection topology
is a 2D mesh. All memory related buses and ports have bandwidths of 960 MB/sec and thus the machine is
well balanced. Memory modules are not attached to individual nodes and thus a process can have much larger
memory space than the capacity of a module.

The HP-UX operating system manages multiple processes for each node. A programmer can view the
machine as a shared memory machine or a distributed memory machine. The HP-UX compiler allows one
to parallelize loops or tasks by inserting a few compiler directives as in Cray. The SMP design is good for
exploiting fine-grain parallelism. Distributed memory programming aided by the message passing interface
allows more programming flexibility. The MPI library is provided with performance monitoring utilities. We
used the primitive routines, MPI_Recv and MPI_Send.

We chose a 31x21 grid for (43, 6,), logarithmically spaced. 4;5 (in eV?) ranges between 10~¢ and 1073.
sin®(26;) ranges between 1074 and 1. In each run we executed one loop count JDL of 4;, which is equivalent
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Table 4
Total computation times for some time-consuming jobs; jobs with JDL > 21 do not take much time and thus not included, times are in
seconds

JDL Time JDL Time JDL Time JDL Time
1 549818 6 293690 11 113039 16 40757
2 490642 7 252483 12 90696 17 32026
3 437505 8 213698 13 74395 18 23056
4 385829 9 175545 14 60998 19 13516
5 338798 10 140963 15 50702 20 5477
Table 5

Computation times for a mini-task consisting of 8 jobs; N, is the number of worker nodes, times are in seconds

Np 1 2 3 4 5 6 7 8 9 10 11 12 total
12 785 747 754 752 769 745 751 756 774 780 767 762 9142
10 945 923 908 924 899 919 896 917 906 899 9136
8 1171 1128 129 1148 1158 1128 1145 1136 9143
6 1554 1510 1517 1509 1528 1524 9141
4 2300 2275 2280 2288 9143

to 21 jobs or 1260 mini-jobs. Depending on the existence and widths of non-adiabatic regions the computation
times vary significantly. For large values of 4> a run takes less than two hours but for small values it takes
several days on a single CPU (see Table 4). The communication times are negligible in this number crunching
problem. Thus the load balancing is the key issue in this problem.

In Table 5, we give a sample of computing times for runs with several different worker node numbers, N,,.
We chose parametric values, 4y = 2.2 x 1073 eV?, sin2(203) = 0.997, 4;, =5 x 1075, and sin?(26,) over the
range, {1 x 107%,5x 107%,1 x 1072, 5 x 1073,1x1072,5%x 1072,1 x 107',5 x 10~'}. We see that the work
load is pretty much balanced.

The HP-UX system manages job queues for multiple processes and some unlucky worker nodes may have
a less share of CPU time than others. When the system is full of jobs, the operating system may even assign
a few worker nodes to a single physical node. However, the HP-UX process management system gave almost
equal share of CPUs for all nodes. Since the host distributes mini-jobs to available worker nodes, the work load
distribution is different from run to run. Thus the exact run time for each node does not have much meaning
and one should focus on the total sum of individual run times.

The last two digits of the total times in Table 5 seem to be erratic. The Unix timing routines do not measure
the exact time of a code section only but may include some system times. Thus Table 5 is not erratic.

In order to analyze the performance one should measure the computation time 7, and communication
times 7, as functions of N,. Convenient quantities [26] to measure the efficiency are the speedup S(N,) =
75(1) /(7p(Np) + 7m(Np)) and the efficiency € = S/N,. In the ideal case of zero communication time we
should have S(N,) = N, or € = 1. In the above example, communication times are less than 10 milliseconds
in all cases. We used the BSD timing routine cputime to measure computation times and the MPI routine
MPI_Wtime for communication times. Since the routine MPI Wtime as implemented in our HP Exemplar
machine is not reliable down to seconds, it is not worth reporting. Table 5 indicates that we have almost perfect
parallelization, € ~ 1. Though not listed, we have confirmed itup to N, ~ 32.
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Fig. 4. An iso-SNU plot for B and Be neutrinos with the chlorine detector. Parameter values that were used are (43 = 2.2 X 10~3 eV?2,
sin?(26,) = 0.997, sin?(263) = 0.997).

5.4. Sample SNU contour plot

With a choice of a parameter set (43 =2.2 x 1073 eV?2,sin®(263) = 0.997), we carried out a task for boron
neutrinos. Using the Bahcall data for neutrino radial spectrum, energy spectrum, absorption cross sections of
the chlorine detector and considering the boron and berillium neutrinos (with E, = 0.862 MeV) only, we have
made a sample contour plot of SNU (Solar Neutrino Units) in Fig. 4. It seems to be in reasonable agreement
with previous results {28,33-45]. For better estimates we should include other neutrinos, increase the grid size,
consider the Earth effect and neutrino creation positions off the line of sight, and run more tasks. Detailed
comparison with various experimental data will be reported elsewhere.

6. Conclusion

We have successfully overcome difficulties in numerically integrating the evolution equations of the three
neutrino species. We have developed an algorithm for computing the survival probability of an electron neutrino
in its flight through the solar core experiencing the Mikheyev-Smirnov—Wolfenstein effect. As suggested by
Messiah, we adopted a hybrid method that uses an accurate approximation formula in the non-resonance region
and numerical integration in the non-adiabatic region. We employed the Bulirsch—Stoer algorithm to integrate
the neutrino evolution equation in the non-adiabatic region. The key of our algorithm is to use the importance
sampling method for sampling the neutrino creation energy and position and to find the optimum radii to start
and stop numerical integration.

We further developed a parallel algorithm for a message passing computer. By setting up a virtual machine
where a host and worker nodes reside and letting them exchange job tokens, we have developed a dynamical
load balancing mechanism which is effective under any irregular load distributions. Due to the negligible amount
of communications and heavy computations, the efficiency was practically one, a perfect parallelization. Thus
even though the whole computation of our 21 x 21 grid takes about 44 days on a single CPU, it will take about
one and half day on a 32 node machine. Even if we increase the grid size to 100 x 100 it will take only about
four and half days for the whole computation on a 256 node HP Exemplar X-class machine.
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With the choice of parameters, dp3 = 2.2 x 1073 eV?,sin?(26,) = 0.997, sin?(2603) = 0.997, E, < 20 MeV,
we have only (1-2) transition. Since most of neutrinos are born near the solar center (¢ < 0.15) where the
transition takes place in many cases, our algorithm is still advantageous in this simple case. This advantage will
become more prominent when we consider low energy pp neutrinos. Supernova neutrinos have to pass through
huge and rapidly changing densities of matter and we will see all three transitions. Numerical algorithms will
be much more valuable in that case.
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